On the Singular Weyl–Titchmarsh Function of Perturbed Spherical Schrödinger Operators
نویسندگان
چکیده
We investigate the singular Weyl–Titchmarsh m-function of perturbed spherical Schrödinger operators (also known as Bessel operators) under the assumption that the perturbation q(x) satisfies xq(x) ∈ L(0, 1). We show existence plus detailed properties of a fundamental system of solutions which are entire with respect to the energy parameter. Based on this we show that the singular m-function belongs to the generalized Nevanlinna class and connect our results with the theory of super singular perturbations.
منابع مشابه
Weyl–Titchmarsh Theory for Schrödinger Operators with Strongly Singular Potentials
We develop Weyl–Titchmarsh theory for Schrödinger operators with strongly singular potentials such as perturbed spherical Schrödinger operators (also known as Bessel operators). It is known that in such situations one can still define a corresponding singular Weyl m-function and it was recently shown that there is also an associated spectral transformation. Here we will give a general criterion...
متن کاملSpectral Asymptotics for Perturbed Spherical Schrödinger Operators and Applications to Quantum Scattering
We find the high energy asymptotics for the singular Weyl–Titchmarsh m-functions and the associated spectral measures of perturbed spherical Schrödinger operators (also known as Bessel operators). We apply this result to establish an improved local Borg–Marchenko theorem for Bessel operators as well as uniqueness theorems for the radial quantum scattering problem with nontrivial angular momentum.
متن کاملCommutation Methods for Schrödinger Operators with Strongly Singular Potentials
We explore the connections between singular Weyl–Titchmarsh theory and the single and double commutation methods. In particular, we compute the singular Weyl function of the commuted operators in terms of the original operator. We apply the results to spherical Schrödinger operators (also known as Bessel operators). We also investigate the connections with the generalized Bäcklund–Darboux trans...
متن کاملSingular Schrödinger Operators as Self-adjoint Extensions of N-entire Operators
We investigate the connections between Weyl–Titchmarsh– Kodaira theory for one-dimensional Schrödinger operators and the theory of n-entire operators. As our main result we find a necessary and sufficient condition for a one-dimensional Schrödinger operator to be nentire in terms of square integrability of derivatives (w.r.t. the spectral parameter) of the Weyl solution. We also show that this ...
متن کاملUniqueness Results for Schrödinger Operators on the Line with Purely Discrete Spectra
We provide an abstract framework for singular one-dimensional Schrödinger operators with purely discrete spectra to show when the spectrum plus norming constants determine such an operator completely. As an example we apply our findings to prove a new uniqueness results for perturbed quantum mechanical harmonic oscillators. In addition, we also show how to establish a Hochstadt–Liebermann type ...
متن کامل